Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 9(2): e0018621, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34585946

ABSTRACT

Little is known regarding the DNA methyltransferases (MTases) in hyperthermophilic archaea. In this study, we focus on an MTase from Aeropyrum pernix K1, a hyperthermophilic archaeon that is found in hydrothermal vents and whose optimum growth temperature is 90°C to 95°C. From genomic sequence analysis, A. pernix K1 has been predicted to have a restriction-modification system (R-M system). The restriction endonuclease from A. pernix K1 (known as ApeKI from New England BioLabs Inc. [catalog code R06435]) has been described previously, but the properties of the MTase from A. pernix K1 (M.ApeKI) have not yet been clarified. Thus, we demonstrated the properties of M.ApeKI. In this study, M.ApeKI was expressed in Escherichia coli strain JM109 and affinity purified using its His tag. The recognition sequence of M.ApeKI was determined by methylation activity and bisulfite sequencing (BS-seq). High-performance liquid chromatography (HPLC) was used to detect the position of the methyl group in methylated cytosine. As a result, it was clarified that M.ApeKI adds the methyl group at the C-5 position of the second cytosine in 5'-GCWGC-3'. Moreover, we also determined that the MTase optimum temperature was over 70°C and that it is strongly tolerant to high temperatures. M.ApeKI is the first highly thermostable DNA (cytosine-5)-methyltransferase to be evaluated by experimental evidence. IMPORTANCE In general, thermophilic bacteria with optimum growth temperatures over or equal to 60°C have been predicted to include only N4-methylcytosine or N6-methyladenine as methylated bases in their DNA, because 5-methylcytosine is susceptible to deamination by heat. However, from this study, A. pernix K1, with an optimum growth temperature at 95°C, was demonstrated to produce a DNA (cytosine-5)-methyltransferase. Thus, A. pernix K1 presumably has 5-methylcytosine in its DNA and may produce an original repair system for the expected C-to-T mutations. M.ApeKI was demonstrated to be tolerant to high temperatures; thus, we expect that M.ApeKI may be valuable for the development of a novel analysis system or epigenetic editing tool.


Subject(s)
Aeropyrum/enzymology , DNA Methylation/genetics , DNA-Cytosine Methylases/metabolism , Aeropyrum/genetics , Aeropyrum/metabolism , Amino Acid Sequence , DNA-Cytosine Methylases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression/genetics , Hot Temperature , Hydrothermal Vents/microbiology
2.
Sci Rep ; 9(1): 14761, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31611569

ABSTRACT

Translation elongation factor EF1A delivers aminoacyl-tRNA to the ribosome in a GTP-bound form, and is released from the ribosome in a GDP-bound form. This association/dissociation cycle proceeds efficiently via a marked conformational change in EF1A. EF1A function is dependent on the ribosomal "stalk" protein of the ribosomal large subunit, although the precise mechanism of action of the stalk on EF1A remains unclear. Here, we clarify the binding mode of archaeal stalk aP1 to GTP-bound aEF1A associated with aPelota. Intriguingly, the C-terminal domain (CTD) of aP1 binds to aEF1A•GTP with a similar affinity to aEF1A•GDP. We have also determined the crystal structure of the aP1-CTD•aEF1A•GTP•aPelota complex at 3.0 Šresolution. The structure shows that aP1-CTD binds to a space between domains 1 and 3 of aEF1A. Biochemical analyses show that this binding is crucial for protein synthesis. Comparison of the structures of aP1-CTD•aEF1A•GTP and aP1-CTD•aEF1A•GDP demonstrates that the binding mode of aP1 changes markedly upon a conformational switch between the GTP- and GDP-bound forms of aEF1A. Taking into account biochemical data, we infer that aP1 employs its structural flexibility to bind to aEF1A before and after GTP hydrolysis for efficient protein synthesis.


Subject(s)
Aeropyrum/metabolism , Archaeal Proteins/metabolism , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Peptide Elongation Factor 1/metabolism , Aeropyrum/chemistry , Archaeal Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Models, Molecular , Peptide Elongation Factor 1/chemistry , Protein Conformation , Ribosomes/chemistry , Ribosomes/metabolism
3.
Proc Natl Acad Sci U S A ; 115(40): 10034-10039, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224495

ABSTRACT

The modified mevalonate pathway is believed to be the upstream biosynthetic route for isoprenoids in general archaea. The partially identified pathway has been proposed to explain a mystery surrounding the lack of phosphomevalonate kinase and diphosphomevalonate decarboxylase by the discovery of a conserved enzyme, isopentenyl phosphate kinase. Phosphomevalonate decarboxylase was considered to be the missing link that would fill the vacancy in the pathway between mevalonate 5-phosphate and isopentenyl phosphate. This enzyme was recently discovered from haloarchaea and certain Chroloflexi bacteria, but their enzymes are close homologs of diphosphomevalonate decarboxylase, which are absent in most archaea. In this study, we used comparative genomic analysis to find two enzymes from a hyperthermophilic archaeon, Aeropyrum pernix, that can replace phosphomevalonate decarboxylase. One enzyme, which has been annotated as putative aconitase, catalyzes the dehydration of mevalonate 5-phosphate to form a previously unknown intermediate, trans-anhydromevalonate 5-phosphate. Then, another enzyme belonging to the UbiD-decarboxylase family, which likely requires a UbiX-like partner, converts the intermediate into isopentenyl phosphate. Their activities were confirmed by in vitro assay with recombinant enzymes and were also detected in cell-free extract from A. pernix These data distinguish the modified mevalonate pathway of A. pernix and likely, of the majority of archaea from all known mevalonate pathways, such as the eukaryote-type classical pathway, the haloarchaea-type modified pathway, and another modified pathway recently discovered from Thermoplasma acidophilum.


Subject(s)
Aconitate Hydratase , Aeropyrum , Archaeal Proteins , Carboxy-Lyases , Mevalonic Acid/metabolism , Terpenes/metabolism , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Aeropyrum/genetics , Aeropyrum/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism
4.
Mol Biol Rep ; 45(6): 1821-1825, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30143972

ABSTRACT

To utilize amino acids from food waste as an energy source, L-proline/O2 biofuel cell was constructed using a stable enzyme from hyperthermophilic archaeon for long-term operation. On the anode, the electrocatalytic oxidation of L-proline by L-proline dehydrogenase from Aeropyrum pernix was observed in the presence of ferrocenecarboxylic acid as mediator. On the cathode, electrocatalytic oxygen reduction was detected. Ketjenblack modification of carbon cloth substrate increased the current density due to increased laccase loading and enhanced electron transfer reaction. The biofuel cell using these electrodes achieved a current density of 6.00 µA/cm2. We successfully constructed the first biofuel cell that generates power from L-proline.


Subject(s)
Aeropyrum/metabolism , Biofuels/microbiology , Proline Oxidase/metabolism , Bioelectric Energy Sources , Electrodes , Ferrous Compounds/metabolism , Laccase/chemistry , Metallocenes , Oxidation-Reduction , Oxygen/metabolism , Proline/metabolism , Proline Oxidase/physiology
5.
Mol Cell Biol ; 38(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29844065

ABSTRACT

Ribosomal stalk proteins recruit translation elongation GTPases to the factor-binding center of the ribosome. Initiation factor 5B (eIF5B in eukaryotes and aIF5B in archaea) is a universally conserved GTPase that promotes the joining of the large and small ribosomal subunits during translation initiation. Here we show that aIF5B binds to the C-terminal tail of the stalk protein. In the cocrystal structure, the interaction occurs between the hydrophobic amino acids of the stalk C-terminal tail and a small hydrophobic pocket on the surface of the GTP-binding domain (domain I) of aIF5B. A substitution mutation altering the hydrophobic pocket of yeast eIF5B resulted in a marked reduction in ribosome-dependent eIF5B GTPase activity in vitro In yeast cells, the eIF5B mutation affected growth and impaired GCN4 expression during amino acid starvation via a defect in start site selection for the first upstream open reading frame in GCN4 mRNA, as observed with the eIF5B deletion mutant. The deletion of two of the four stalk proteins diminished polyribosome levels (indicating defective translation initiation) and starvation-induced GCN4 expression, both of which were suppressible by eIF5B overexpression. Thus, the mutual interaction between a/eIF5B and the ribosomal stalk plays an important role in subunit joining during translation initiation in vivo.


Subject(s)
Eukaryotic Initiation Factors/metabolism , Ribosomal Proteins/metabolism , Aeropyrum/genetics , Aeropyrum/metabolism , Amino Acid Substitution , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Eukaryotic Initiation Factor-1/chemistry , Eukaryotic Initiation Factor-1/genetics , Eukaryotic Initiation Factor-1/metabolism , Eukaryotic Initiation Factors/chemistry , Eukaryotic Initiation Factors/genetics , Models, Molecular , Mutation , Peptide Chain Initiation, Translational , Phenotype , Protein Interaction Domains and Motifs , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
6.
Biochem Biophys Res Commun ; 497(1): 87-92, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29427665

ABSTRACT

Archaea that thrive in harsh environments usually produce membrane lipids with specific structures such as bipolar tetraether lipids. Only a few genera of archaea, which are hyperthermophiles or halophiles, are known to utilize diether lipids with extended, C25 isoprenoid hydrocarbon chains. In the present study, we identify two prenyltransferases and a prenyl reductase responsible for the biosynthesis of C25,C25-diether lipids in the hyperthermophilic archaeon Aeropyrum pernix. These enzymes are more specific to C25 isoprenoid chains than to C20 chains, which are used for the biosynthesis of ordinary C20,C20-diether archaeal lipids. The recombinant expression of these enzymes with two known archaeal enzymes allows the production of C25,C25-diether archaeal lipids in the cells of Escherichia coli.


Subject(s)
Aeropyrum/classification , Aeropyrum/metabolism , Biosynthetic Pathways/physiology , Dimethylallyltranstransferase/metabolism , Membrane Lipids/biosynthesis , Oxidoreductases/metabolism , Multienzyme Complexes/metabolism , Species Specificity , Terpenes/metabolism
7.
Microbiology (Reading) ; 163(12): 1864-1879, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29139344

ABSTRACT

Disulfide bonds confer stability and activity to proteins. Bioinformatic approaches allow predictions of which organisms make protein disulfide bonds and in which subcellular compartments disulfide bond formation takes place. Such an analysis, along with biochemical and protein structural data, suggests that many of the extremophile Crenarachaea make protein disulfide bonds in both the cytoplasm and the cell envelope. We have sought to determine the oxidative folding pathways in the sequenced genomes of the Crenarchaea, by seeking homologues of the enzymes known to be involved in disulfide bond formation in bacteria. Some Crenarchaea have two homologues of the cytoplasmic membrane protein VKOR, a protein required in many bacteria for the oxidation of bacterial DsbAs. We show that the two VKORs of Aeropyrum pernix assume opposite orientations in the cytoplasmic membrane, when expressed in E. coli. One has its active cysteines oriented toward the E. coli periplasm (ApVKORo) and the other toward the cytoplasm (ApVKORi). Furthermore, the ApVKORo promotes disulfide bond formation in the E. coli cell envelope, while the ApVKORi promotes disulfide bond formation in the E. coli cytoplasm via a co-expressed archaeal protein ApPDO. Amongst the VKORs from different archaeal species, the pairs of VKORs in each species are much more closely related to each other than to the VKORs of the other species. The results suggest two independent occurrences of the evolution of the two topologically inverted VKORs in archaea. Our results suggest a mechanistic basis for the formation of disulfide bonds in the cytoplasm of Crenarchaea.


Subject(s)
Aeropyrum/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Disulfides/chemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Aeropyrum/chemistry , Aeropyrum/genetics , Archaeal Proteins/genetics , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Cysteine/chemistry , Cysteine/metabolism , Cytoplasm/chemistry , Cytoplasm/genetics , Cytoplasm/metabolism , Disulfides/metabolism , Membrane Proteins/genetics , Periplasm/genetics , Periplasm/metabolism , Protein Folding
8.
Biochim Biophys Acta ; 1857(2): 160-168, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26592143

ABSTRACT

Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O.


Subject(s)
Aeropyrum/chemistry , Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Cysteine/chemistry , Cytochrome b Group/chemistry , Heme/analogs & derivatives , Membrane Proteins/chemistry , Aeropyrum/enzymology , Aeropyrum/genetics , Aeropyrum/metabolism , Amino Acid Sequence , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cysteine/metabolism , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Gene Expression , Heme/biosynthesis , Heme/chemistry , Heme/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Mutation , Oxygen/chemistry , Oxygen/metabolism , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
9.
Phys Rev Lett ; 115(19): 198101, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26588417

ABSTRACT

The function of membrane-embedded proteins such as ion channels depends crucially on their conformation. We demonstrate how conformational changes in asymmetric membrane proteins may be inferred from measurements of their diffusion. Such proteins cause local deformations in the membrane, which induce an extra hydrodynamic drag on the protein. Using membrane tension to control the magnitude of the deformations, and hence the drag, measurements of diffusivity can be used to infer-via an elastic model of the protein-how conformation is changed by tension. Motivated by recent experimental results [Quemeneur et al., Proc. Natl. Acad. Sci. U.S.A. 111, 5083 (2014)], we focus on KvAP, a voltage-gated potassium channel from Aeropyrum pernix. The conformation of KvAP is found to change considerably due to tension, with its "walls," where the protein meets the membrane, undergoing significant angular strains. The torsional stiffness is determined to be 26.8k(B)T per radian at room temperature. This has implications for both the structure and the function of such proteins in the environment of a tension-bearing membrane.


Subject(s)
Models, Chemical , Potassium Channels, Voltage-Gated/chemistry , Aeropyrum/chemistry , Aeropyrum/metabolism , Molecular Probe Techniques , Molecular Probes/chemistry , Potassium Channels, Voltage-Gated/metabolism , Protein Conformation , Thermodynamics , Torque
10.
Environ Microbiol Rep ; 7(6): 936-45, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26332065

ABSTRACT

This study reports the ability of one hyperthermophilic and two thermophilic microorganisms to grow anaerobically by the reduction of chlorate and perchlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces perchlorate with a periplasmic enzyme related to nitrate reductases, but that it lacks a functional chlorite-disproportionating enzyme (Cld) to complete the pathway. Aeropyrum pernix, previously described as a strictly aerobic microorganism, seems to rely on the chemical reactivity of reduced sulfur compounds with chlorite, a mechanism previously reported for perchlorate-reducing Archaeoglobus fulgidus. The chemical oxidation of thiosulfate (in excessive amounts present in the medium) and the reduction of chlorite result in the release of sulfate and chloride, which are the products of a biotic-abiotic perchlorate reduction pathway in Ae. pernix. The apparent absence of Cld in two other perchlorate-reducing microorganisms, Carboxydothermus hydrogenoformans and Moorella glycerini strain NMP, and their dependence on sulfide for perchlorate reduction is consistent with the observations made on Ar. fulgidus. Our findings suggest that microbial perchlorate reduction at high temperature differs notably from the physiology of perchlorate- and chlorate-reducing mesophiles and that it is characterized by the lack of a chlorite dismutase and is enabled by a combination of biotic and abiotic reactions.


Subject(s)
Aeropyrum/metabolism , Chlorates/metabolism , Firmicutes/metabolism , Perchlorates/metabolism , Aeropyrum/genetics , Firmicutes/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Proteome , Thiosulfates/metabolism
11.
Nat Struct Mol Biol ; 21(2): 160-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24413055

ABSTRACT

Voltage-gated ion channels respond to transmembrane electric fields through reorientations of the positively charged S4 helix within the voltage-sensing domain (VSD). Despite a wealth of structural and functional data, the details of this conformational change remain controversial. Recent electrophysiological evidence showed that equilibrium between the resting ('down') and activated ('up') conformations of the KvAP VSD from Aeropyrum pernix can be biased through reconstitution in lipids with or without phosphate groups. We investigated the structural transition between these functional states, using site-directed spin-labeling and EPR spectroscopic methods. Solvent accessibility and interhelical distance determinations suggest that KvAP gates through S4 movements involving an ∼3-Šupward tilt and simultaneous ∼2-Šaxial shift. This motion leads to large accessibly changes in the intracellular water-filled crevice and supports a new model of gating that combines structural rearrangements and electric-field remodeling.


Subject(s)
Aeropyrum/metabolism , Lipids/chemistry , Potassium Channels, Voltage-Gated/chemistry , Lipid Metabolism , Molecular Conformation , Potassium Channels, Voltage-Gated/physiology , Spin Labels
12.
Article in English | MEDLINE | ID: mdl-23989144

ABSTRACT

Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that directs post-transcriptional modification of archaeal RNAs. The L7Ae protein from Aeropyrum pernix (Ap L7Ae), a member of the Crenarchaea, was found to have an extremely high melting temperature (>383 K). The crystal structure of Ap L7Ae has been determined to a resolution of 1.56 Å. The structure of Ap L7Ae was compared with the structures of two homologs: hyperthermophilic Methanocaldococcus jannaschii L7Ae and the mesophilic counterpart mammalian 15.5 kD protein. The primary stabilizing feature in the Ap L7Ae protein appears to be the large number of ion pairs and extensive ion-pair network that connects secondary-structural elements. To our knowledge, Ap L7Ae is among the most thermostable single-domain monomeric proteins presently observed.


Subject(s)
Aeropyrum/chemistry , Archaeal Proteins/chemistry , Ions/chemistry , RNA, Archaeal/chemistry , Ribosomal Proteins/chemistry , Aeropyrum/genetics , Aeropyrum/metabolism , Amino Acid Sequence , Animals , Archaeal Proteins/genetics , Binding Sites , Crystallography, X-Ray , Escherichia coli/genetics , Hot Temperature , Humans , Hydrogen Bonding , Methanocaldococcus/chemistry , Methanocaldococcus/genetics , Methanocaldococcus/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Stability , Protein Structure, Secondary , RNA, Archaeal/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Ribosomal Proteins/genetics , Sequence Alignment , Structural Homology, Protein
13.
Article in English | MEDLINE | ID: mdl-23832195

ABSTRACT

The crystal structure of peroxiredoxin from the anaerobic hyperthermophilic archaeon Pyrococcus horikoshii (PhPrx) was determined at a resolution of 2.25 Å. The overall structure was a ring-type decamer consisting of five homodimers. Citrate, which was included in the crystallization conditions, was bound to the peroxidatic cysteine of the active site, with two O atoms of the carboxyl group mimicking those of the substrate hydrogen peroxide. PhPrx lacked the C-terminal tail that forms a 32-residue extension of the protein in the homologous peroxiredoxin from Aeropyrum pernix (ApPrx).


Subject(s)
Citric Acid/metabolism , Crystallography, X-Ray , Cysteine/metabolism , Peroxiredoxins/chemistry , Pyrococcus horikoshii/metabolism , Aeropyrum/metabolism , Amino Acid Sequence , Archaea/metabolism , Binding Sites , Citric Acid/chemistry , Crystallization , Cysteine/chemistry , Hydrogen Peroxide/chemistry , Models, Molecular , Molecular Sequence Data , Oxidants/chemistry , Peroxiredoxins/metabolism , Protein Conformation , Sequence Homology, Amino Acid
14.
Proc Natl Acad Sci U S A ; 110(9): 3369-74, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23401554

ABSTRACT

Voltage-gated ion channels support electrochemical activity in cells and are largely responsible for information flow throughout the nervous systems. The voltage sensor domains in these channels sense changes in transmembrane potential and control ion flux across membranes. The X-ray structures of a few voltage-gated ion channels in detergents have been determined and have revealed clear structural variations among their respective voltage sensor domains. More recent studies demonstrated that lipids around a voltage-gated channel could directly alter its conformational state in membrane. Because of these disparities, the structural basis for voltage sensing in native membranes remains elusive. Here, through electron-crystallographic analysis of membrane-embedded proteins, we present the detailed view of a voltage-gated potassium channel in its inactivated state. Contrary to all known structures of voltage-gated ion channels in detergents, our data revealed a unique conformation in which the four voltage sensor domains of a voltage-gated potassium channel from Aeropyrum pernix (KvAP) form a ring structure that completely surrounds the pore domain of the channel. Such a structure is named the voltage sensor ring. Our biochemical and electrophysiological studies support that the voltage sensor ring represents a physiological conformation. These data together suggest that lipids exert strong effects on the channel structure and that these effects may be changed upon membrane disruption. Our results have wide implications for lipid-protein interactions in general and for the mechanism of voltage sensing in particular.


Subject(s)
Aeropyrum/metabolism , Cell Membrane/metabolism , Potassium Channels, Voltage-Gated/chemistry , Cross-Linking Reagents/metabolism , Crystallography, X-Ray , Electrons , Lipids/chemistry , Models, Molecular , Protein Structure, Secondary , Protein Structure, Tertiary
15.
Article in English | MEDLINE | ID: mdl-22869109

ABSTRACT

Fibrillarin is the key methyltransferase associated with the C/D class of small nuclear ribonucleoproteins (snRNPs) and participates in the preliminary step of pre-ribosomal rRNA processing. This molecule is found in the fibrillar regions of the eukaryotic nucleolus and is involved in methylation of the 2'-O atom of ribose in rRNA. Human fibrillarin contains an N-terminal GAR domain, a central RNA-binding domain comprising an RNP-2-like superfamily consensus sequence and a catalytic C-terminal helical domain. Here, Aeropyrum pernix fibrillarin is described, which is homologous to the C-terminal domain of human fibrillarin. The protein was crystallized with an S-adenosyl-L-methionine (SAM) ligand bound in the active site. The molecular structure of this complex was solved using X-ray crystallography at a resolution of 1.7 Šusing molecular replacement with fibrillarin structural homologs. The structure shows the atomic details of SAM and its active-site interactions; there are a number of conserved residues that interact directly with the cofactor. Notably, the adenine ring of SAM is stabilized by π-π interactions with the conserved residue Phe110 and by electrostatic interactions with the Asp134, Ala135 and Gln157 residues. The π-π interaction appears to play a critical role in stabilizing the association of SAM with fibrillarin. Furthermore, comparison of A. pernix fibrillarin with homologous structures revealed different orientations of Phe110 and changes in α-helix 6 of fibrillarin and suggests key differences in its interactions with the adenine ring of SAM in the active site and with the C/D RNA. These differences may play a key role in orienting the SAM ligand for catalysis as well as in the assembly of other ribonucleoproteins and in the interactions with C/D RNA.


Subject(s)
Aeropyrum/chemistry , Chromosomal Proteins, Non-Histone/chemistry , S-Adenosylmethionine/chemistry , Aeropyrum/metabolism , Catalytic Domain , Chromosomal Proteins, Non-Histone/metabolism , Crystallography, X-Ray , Ligands , Models, Molecular , Protein Binding , Protein Denaturation , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , S-Adenosylmethionine/metabolism
16.
PLoS One ; 7(6): e39548, 2012.
Article in English | MEDLINE | ID: mdl-22761822

ABSTRACT

BACKGROUND: An R30 fraction from the growth medium of Aeropyrum pernix was analyzed for the protease that can digest the pathological prion protein isoform (PrP(Sc)) from different species (human, bovine, deer and mouse). METHODOLOGY/PRINCIPAL FINDINGS: Degradation of the PrP(Sc) isoform by the R30 fraction and the purified protease was evaluated using the 6H4 anti-PrP monoclonal antibody. Fragments from the N-terminal and C-terminal of PrP(Sc) were also monitored by Western blotting using the EB8 anti-PrP monoclonal antibody, and by dot blotting using the C7/5 anti-PrP monoclonal antibody, respectively. For detection of smaller peptides from incomplete digestion of PrP(Sc), the EB8 monoclonal antibody was used after precipitation with sodium phosphotungstate. Characterization of the purified active protease from the R30 fraction was achieved, through purification by fast protein liquid chromatography, and identification by tandem mass spectrometry the serine metalloprotease pernisine. SDS-PAGE and zymography show the purified pernisine plus its proregion with a molecular weight of ca. 45 kDa, and the mature purified pernisine as ca. 23 kDa. The purified pernisine was active between 58 °C and 99 °C, and between pH 3.5 and 8.0. The temperature and pH optima of the enzymatic activity of the purified pernisine in the presence of 1 mM CaCl(2) were 105 °C ± 0.5 °C and pH 6.5 ± 0.2, respectively. CONCLUSIONS/SIGNIFICANCE: Our study has identified and characterized pernisine as a thermostable serine metalloprotease that is secreted from A. pernix and that can digest the pathological prion protein PrP(Sc).


Subject(s)
Aeropyrum/chemistry , Metalloproteases/analysis , PrPSc Proteins/metabolism , Aeropyrum/metabolism , Animals , Blotting, Western , Brain/metabolism , Cattle , Electrophoresis, Polyacrylamide Gel , Humans , Metalloproteases/metabolism , Mice , Protein Isoforms/metabolism
17.
Angew Chem Int Ed Engl ; 51(29): 7150-3, 2012 Jul 16.
Article in English | MEDLINE | ID: mdl-22696138

ABSTRACT

Moving freely: A recent model for voltage gating of potassium channels proposed that the four arginine residues of the voltage-sensing S4 helix (left) are in direct contact with the membrane lipids and move into the hydrocarbon core of the membrane during gating. It is demonstrated that the physical properties of the isolated S4 sequence (right) are sufficient to allow it to freely translocate across synthetic membranes.


Subject(s)
Aeropyrum/chemistry , Archaeal Proteins/chemistry , Potassium Channels, Voltage-Gated/chemistry , Aeropyrum/metabolism , Amino Acid Sequence , Archaeal Proteins/metabolism , Arginine/chemistry , Arginine/metabolism , Ion Channel Gating , Membrane Lipids/metabolism , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Potassium Channels, Voltage-Gated/metabolism , Protein Structure, Secondary
18.
Biophys J ; 102(11): L44-6, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22713585

ABSTRACT

Voltage-dependent ion channels open and close in response to changes in membrane electrical potential due to the motion of their voltage-sensing domains (VSDs). VSD charge displacements within the membrane electric field are observed in electrophysiology experiments as gating currents preceding ionic conduction. The elementary charge motions that give rise to the gating current cannot be observed directly, but appear as discrete current pulses that generate fluctuations in gating current measurements. Here we report direct observation of gating-charge displacements in an atomistic molecular dynamics simulation of the isolated VSD from the KvAP channel in a hydrated lipid bilayer on the timescale (10-µs) expected for elementary gating charge transitions. The results reveal that gating-charge displacements are associated with the water-catalyzed rearrangement of salt bridges between the S4 arginines and a set of conserved acidic side chains on the S1-S3 transmembrane segments in the hydrated interior of the VSD.


Subject(s)
Aeropyrum/metabolism , Archaeal Proteins/metabolism , Ion Channel Gating/physiology , Microscopy , Potassium Channels/metabolism , Archaeal Proteins/chemistry , Membrane Potentials/physiology , Potassium Channels/chemistry , Protein Structure, Tertiary
19.
J Mol Biol ; 422(1): 33-44, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22580223

ABSTRACT

L-Cysteine is synthesized from O-acetyl-L-serine (OAS) and sulfide by O-acetylserine sulfhydrylase (OASS; EC 2.5.1.47) in plants and bacteria. O-phosphoserine sulfhydrylase (OPSS; EC 2.5.1.65) is a novel enzyme from the hyperthermophilic aerobic archaeon Aeropyrum pernix K1 (2003). OPSS can use OAS or O-phospho-L-serine (OPS) to synthesize L-cysteine. To elucidate the mechanism of the substrate specificity of OPSS, we analyzed three-dimensional structures of the active site of the enzyme. The active-site lysine (K127) of OPSS forms an internal Schiff base with pyridoxal 5'-phosphate. Therefore, crystals of the complexes formed by the K127A mutant with the external Schiff base of pyridoxal 5'-phosphate with either OPS or OAS were prepared and examined by X-ray diffraction analysis. In contrast to that observed for OASS, no significant difference was seen in the overall structure between the free and complexed forms of OPSS. The side chains of T152, S153, and Q224 interacted with the carboxylate of the substrates, as a previous study has suggested. The side chain of R297 has been proposed to recognize the phosphate group of OPS. Surprisingly, however, the position of R297 was significantly unchanged in the complex of the OPSS K127A mutant with the external Schiff base, allowing enough space for an interaction with OPS. The positively charged environment around the entrance of the active site including S153 and R297 is important for accepting negatively charged substrates such as OPS.


Subject(s)
Aeropyrum/enzymology , Archaeal Proteins/chemistry , Carbon-Oxygen Lyases/chemistry , Aeropyrum/metabolism , Archaeal Proteins/metabolism , Binding Sites , Carbon-Oxygen Lyases/metabolism , Catalytic Domain , Kinetics , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/metabolism , Schiff Bases/chemistry , Structure-Activity Relationship , Substrate Specificity
20.
J Biol Chem ; 287(13): 10394-10402, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22334696

ABSTRACT

All thermophilic and hyperthermophilic archaea encode homologs of dimeric Alba (Sac10b) proteins that bind cooperatively at high density to DNA. Here, we report the 2.0 Å resolution crystal structure of an Alba2 (Ape10b2)-dsDNA complex from Aeropyrum pernix K1. A rectangular tube-like structure encompassing duplex DNA reveals the positively charged residues in the monomer-monomer interface of each dimer packing on either side of the bound dsDNA in successive minor grooves. The extended hairpin loop connecting strands ß3 and ß4 undergoes significant conformational changes upon DNA binding to accommodate the other Alba2 dimer during oligomerization. Mutational analysis of key interacting residues confirmed the specificity of Alba2-dsDNA interactions.


Subject(s)
Aeropyrum/chemistry , Archaeal Proteins/chemistry , DNA, Archaeal/chemistry , DNA-Binding Proteins/chemistry , Aeropyrum/genetics , Aeropyrum/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Crystallography, X-Ray , DNA, Archaeal/genetics , DNA, Archaeal/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...